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between isocitrate and α-ketoglutarate, the inverse reaction, so called the reductive carboxylation, could 
occur to maintain TCA cycle intermediates under mitochondria defects. Emerging evidence reported the 
role of glutamine mediating reductive carboxylation for lipid biosynthesis and also for redox homeostasis 
in cancer with dysfunctional mitochondria or under hypoxia[34,41-43].

Nitrogen donor
Glutamine has two atoms of reduced nitrogen, called α-nitrogen and γ-nitrogen. At the level of nucleo-
tide synthesis, glutamine is the nitrogen donor for enzymes in the purine synthesis, including glutamine 
phosphoribosylpyrophosphate amidotransferase, phosphoribosyl formylglycinamidine synthetase, and 
guanosine monophosphate synthetase. But glutamine also acts as nitrogen donor, being metabolized by 
enzymes involved in the synthesis of pyrimidine, including CAD and CTP synthetase. Thus, one gluta-
mine molecule is used in the production of uracil and thymine, two for cytosine and adenine, and three 
for a guanine base. Besides that, purine and pyrimidine synthesis use also glutamine-derived aspartate, 
whose supplementation can rescue cell cycle arrest caused by glutamine deprivation[44]. Interestingly, only 
the γ-nitrogen of glutamine is used for nucleotide synthesis. This nitrogen is also required for the synthesis 
of NAD, glucosamine-6-phosphate (a precursor for protein glycosylation), and asparagine, a non-essential 
amino acid that compensates for glutamine deprivation[45].

The α-nitrogen of glutamine is used to produce other non-essential amino acids or polyamines via trans-
amination. This reaction is catalysed by a family of aminotransferases to produce alanine[46], aspartate[47], 
serine[48], proline[49] and ornithine[50]. Glutamine is the source of at least 50% of non-essential amino acids 
used in protein synthesis by cancer cells[51]. It is estimated that glutamine represents on average up to 4.7% 
of all amino acid residues in human proteome, but obviously the percentage can differ from protein to 
protein[52]. Hence, glutamine is a key structural building block in the biosynthesis of proteins, nucleotides, 
non-essential amino acids and polyamines to support biomass accumulation and rapid rates of prolifera-
tion.

Redox homeostasis control
During tumorigenesis, cancer cells encounter oxidative stress continuously. In order to maintain oxidative 
homeostasis, the cells need to increase their antioxidant capacity. Glutamine metabolism plays a major role 
in the cellular anti-oxidative mechanisms. Glutamine-derived glutamate is used in the synthesis of gluta-
thione, through the condensation with cysteine and glycine by glutamate-cysteine ligase and glutathione 
synthetase. Tracer experiments with labelled 13C-glutamine showed an enrichment of 13C carbons in glu-
tathione. Accordingly, glutamine starvation reduces the glutathione pool of transformed cells[33,53]. More-
over, as cystine is an extracellular source of cysteine, cystine uptake is facilitated by the efflux of glutamate 
via the xCT antiporter. Once inside the cell, cystine is converted to cysteine, which is then incorporated 
into glutathione. Indeed, pharmacological inhibition of xCT increases reactive oxygen species (ROS) level 
and suppresses tumor growth[54,55]. However, different investigations showed that xCT overexpression en-
hances cell dependency to glutamine or glucose[56-58]. Those studies identified a new function of xCT anti-
porter as a regulator of nutrient flexibility by antagonizing glutamine metabolism. Lastly, glutamine oxida-
tion supports redox homeostasis by supplying carbon to malic enzymes, which produce NADPH. Indeed, 
in proliferating cells, NADPH is used not only for the lipid synthesis, but also for the reduction of oxidized 
glutathione (GSSG), protecting the cells from oxidative stress[59].

Chromatin organization
Glutamine metabolism does not only generate building blocks and energy for cell growth, but also pro-
duces co-substrates for cellular regulatory cascades, including those that regulate chromatin organization. 
Actually, glutamine-derived α-ketoglutarate is a co-substrate of dioxygenase enzymes, including the TET 
family and the jumonji (JMJ) family. Enzymes from the TET and JMJ family catalyse histone and DNA de-
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methylation and they are inhibited by the accumulation succinate, the by-product of these enzymes.

One example of the role of glutamine-derived α-ketoglutarate in the regulation of histone and DNA meth-
ylation is the neomorphic mutations in IDH1/2[60,61]. Moreover, loss-of-function mutations of succinate 
dehydrogenase (SDH) increase cellular succinate level, which inhibits DNA demethylation and contribute 
to tumorigenesis[62,63]. Finally, low glutamine in the core region of solid tumors led to histone hypermethyl-
ation due to decreased α-ketoglutarate level, resulting in cell dedifferentiation and therapeutic resistance in 
melanoma cells[64]. Accordingly, glutamine metabolism plays a role in gene expression through the contri-
bution of α-ketoglutarate and succinate to chromatin structure modification.

GLUTAMINE ADDICTION IN CANCER
Due to the high demand of cancer cells for glutamine, glutamine metabolism is highly regulated in order 
to maintain cellular biosynthesis and cell growth. Thus, the machinery which regulates glutamine metabo-
lism, needs to be very efficient to increase the cellular access to glutamine. The first mechanism to enhance 
glutamine acquisition is to induce glutamine uptake. Different glutamine transporters are known, espe-
cially SLC1A5/ASCT2 which is controlled by c-myc or E2F. SLC1A5 is highly expressed in triple-negative 
breast cancer patients, correlating with poor survival in tumor-bearing mice[65]. Besides, other transporters 
such as SLC38A1/SNAT1 and SLC38A2/SNAT2 can compensate for the depletion of SLC1A5/ASCT2 to 
contribute to glutamine uptake[66].

The expression and activity of glutaminolytic enzymes, GLS and GDH, are also tightly regulated. GLS is 
inhibited by its product glutamate or by inorganic phosphate. Sirtuin 5 (SIRT5), which is overexpressed in 
lung cancer, decrease the succinylation of GLS to regulate ammonia production and ammonia-induced au-
tophagy[67]. The transcription factor c-myc induces the expression of GLS through the repression of miR-23a 
and miR-23b62. Furthermore, additional mechanisms are reported to regulate GLS, such as RNA-binding 
protein regulation of alternative splicing[68,69] or protein degradation through the ubiquitin ligase complex 
APC/C-Cdh1 during cell cycle progression[70].

Similar to GLS, GDH expression and activity are controlled by different effectors. GDH is allosterically 
regulated by activators like ADP and leucine, or by inhibitors like ATP, GTP and palmitoyl-CoA[71-73]. At 
the level of post-translational modification, the sirtuin SIRT4 ADP-ribosylates and downregulates GDH 
in beta-pancreatic cells, thereby decreasing insulin secretion in response to amino acids during calorie-
sufficient conditions[74]. When the extracellular glutamine level is limited, some cancer cell lines are able to 
induce GS expression in order to escape from glutamine deficient-induced cell death. GS has been found to 
be overexpressed in some cancers, such as breast cancer or glioblastoma, promoting cell proliferation[40,75]. 
GS transcription is activated by different oncogenic pathways, such as PI3K-PKB-FOXO pathway[76], c-
myc[77], and Yap1/Hippo pathway[78]. Moreover, GS is inactivated by extracellular glutamine because the 
presence of glutamine induces GS acetylation by p300/CBP protein, facilitating its ubiquitination and pro-
teasomal degradation[79-81].

Glutamine addiction appears when cancer cells undergo cell death in conditions of glutamine limitation 
or when glutamine metabolism is inhibited. Many cancer cells which rely on glutamine catabolism for 
building blocks and energy have been reported to be addicted to glutamine[33,82-84]. Glutamine-addicted 
cells exhibit a decreased survival, or even undergo apoptotic cell death, associated with an increased in 
DNA damage, an overproduction of ROS or a decreased reduced/oxidized glutathione (GSH/GSSG) ratio. 
In this context, the oncogenic transcription factor c-myc plays a key role in the induction of glutamine 
addiction[18,33]. Together, these results suggested that this phenotype could be exploited as cancer therapy 
through the use of inhibitors of glutaminolytic enzymes or treatment which induce glutamine depletion 
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like L-asparaginase.

On the contrary, some cell types show glutamine independence due to the expression of GS. Indeed, glio-
ma cells can synthetize glutamine from glutamate through the activity of GS, maintaining the cell prolif-
eration during glutamine deprivation[85]. Also, those cells use glucose as a source for TCA cycle anaplerosis, 
which can sufficiently provide α-ketoglutarate for glutamate and glutamine synthesis. However, the source 
of the free ammonia necessary for glutamine synthesis is not clear. Alternatively, some cell types can adapt 
to glutamine withdrawal using asparagine[45,86]. Asparagine is indeed playing a role in the exchange of ex-
tracellular amino acids, especially serine, arginine and histidine[87]. Despite that asparagine is synthetized 
from glutamine through asparagine synthetase, how cancer cells adapt their metabolic needs during gluta-
mine deprivation remains to be elucidated.

GLUTAMINE METABOLISM AND MTORC1 PATHWAY
Glutamine metabolism and mammalian target of rapamycin complex 1 (mTORC1) pathway have a tight 
connection through different mechanisms. The activation of mTORC1 by glutamine and other amino ac-
ids is mediated by the Rag GTPase pathway. In addition, glutamine plays a role as the efflux solute for the 
import of leucine which supports glutamine to activate mTORC1 through glutaminolysis. Moreover, gluta-
mine and leucine cooperate to produce α-ketoglutarate through glutaminolysis, which ultimately activates 
mTORC1. Indeed, short-term glutaminolysis induces mTORC1 lysosomal translocation and activation 
via the Rag GTPase, then inhibiting autophagy and promoting cell growth[88]. Moreover glutaminolysis-
mediated mTORC1 activation required prolyl hydroxylase (PHD) enzymatic activity in a HIF-independent 
manner[89]. Those evidence highlight the role of glutaminolysis-PHD-mTORC1 axis in cancer growth. Be-
sides, glutamine stimulates lysosomal translocation and activation of mTORC1 via the small GTPase ARF1 
and v-ATPase in RagA and RagB knockout cells without Ragulator contribution[90].

In agreement with this positive connection between glutaminolysis and mTORC1, FOXO-mediated expres-
sion of GS inhibits mTOR signaling by blocking its lysosomal translocation[76]. This mechanism is impor-
tant for maintaining autophagy during nutrient deprivation. Hence, mTORC1 sense glutamine availability 
in both directions: when glutamine is available, mTORC1 is activated via α-ketoglutarate production; but 
mTORC1 is inactivated when glutamine production is triggered.

The connection between glutamine metabolism and mTORC1 present additional connection branches, as 
glutamine also plays a role in autophagy-induced mTORC1 restoration during amino acid starvation[91]. 
Thus, glutamine recycling, supported by autophagy, is sufficient to reactivate mTORC1 under restrictive 
conditions.

However, and paradoxically, long-term glutaminolysis activation during nutritional restriction induces an 
unbalanced activation of mTORC1 during nutrient deprivation and promotes apoptosis[92]. This type of 
metabolic-induced cell death is called “glutamoptosis”, which supports a tumor suppressor role of gluta-
mine metabolism and mTORC1 (normally known as pro-proliferative inducers) during nutritional imbal-
ance. During glutamoptosis, mTORC1-mediated inhibition of autophagy leads to the accumulation of the 
autophagic cargo protein sequestosome1/p62 (SQSTM1/p62). Then SQSTM1/p62 interacts with Caspase 
8 and activates it to trigger apoptosis. Strikingly, the inhibition of mTORC1 by rapamycin promoted cell 
survival upon amino acid starvation, which could partially explain the resistance to rapamycin treatment 
observed in some tumor cells.

Conversely, mTORC1 can regulate glutamine metabolism via different mechanisms. GLS and GDH are 
both regulated by mTORC1 pathway. Mechanistically, mTORC1 inhibits the transcription of SIRT4 by 
degrading its activator CREB2 (cyclic adenosine monophosphate responsive element-binding 2), thereby 
activating GDH[74,93,94]. Also, mTORC1 activate GLS through S6K1/eIF4B-dependent mRNA translation 
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of c-myc, leading to GLS expression by repressing miR-23a/b[20,95]. Intriguingly, in an organotypic 3D tis-
sue culture model, mTORC1 supports the expression of aminotransferases and the suppression of GDH in 
proliferating cells[96]. Thus, the regulation of glutamine metabolism by mTORC1 is cell type-dependent and 
needs to be elucidated further. Moreover, mTORC1 controls glutamine transporters SLC1A4 and SLC1A5 
expression, thereby promoting glutamine uptake upon androgen receptor signaling in prostate cancer[97]. 
Interestingly, evidence has shown that glutamine flux through glutamine transporters activates mTOR sig-
naling[98].

In summary, glutamine uptake and metabolism have a tight connection with mTOR signaling. As both 
pathways are upregulated in many cancers, strategies which target both glutamine metabolism and 
mTORC1 signaling have shown synergistic effects against cell growth and proliferation[99].

THERAPEUTIC APPLICATIONS
Given the dependence of cancer cells on glutamine metabolism, targeted therapies have been developed 
against glutamine metabolism, from glutamine uptake to glutamine-catalysed enzymes. The inhibition of 
GLS got the attention due to the dysregulation of GLS in a variety of cancers. Indeed, GLS inhibitors have 
shown promising tumor-suppressive activities in preclinical models for 968 and  bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), or even in clinical models for CB-839[100,101]. CB-839 has shown 
efficacy in triple-negative breast cancer and haematological malignancies therapies[101,102]. In addition to 
GLS inhibitors, strategies targeting the conversion of glutamate into α-ketoglutarate, such as GDH inhibi-
tors and aminotransferase inhibitors, have also been evaluated in preclinical models of breast cancer and 
neuroblastoma[103-105].

Nevertheless, most of the compounds are still in the preclinical evaluation stage, or have been directly dis-
carded due to high cytotoxicity. Furthermore, some limitations derived of treatment resistance to targeted 
therapies against glutamine metabolism have been reported. Induction of pyruvate carboxylase can allow 
tumor cells to use glucose-derived pyruvate instead of glutamine for anaplerosis, inducing a glutamine-
independent growth[106-108]. Also, glutamate-derived glutamine production through GS activity could be 
another mechanism to overcome glutamine addiction and to promote resistance to glutaminolysis inhibi-
tors[85]. However, combination therapy between glutamine metabolism inhibitors and other pathway inhibi-
tors induced a stronger apoptotic response and enhanced anti-tumor efficacy. For instance, mTOR inhibi-
tion in glioblastoma multiforme cell lines led to a compensatory upregulation of glutamine metabolism, 
promoting mTOR inhibitor resistance. Thus, combined inhibition of mTOR and GLS resulted in synergis-
tic tumor cell death and growth inhibition in xenograft mouse models[99].

CONCLUSION AND FUTURE PERSPECTIVES
Glutamine metabolism plays a central role in the regulation of uncontrolled tumor growth by supply-
ing metabolic intermediates as a carbon and nitrogen source and by maintaining the redox homeostasis 
against oxidative stress during rapid proliferation. The high demand of cancer cells for glutamine results 
in glutamine addiction phenotype, which becomes a promising target for the design of new therapeutic 
strategy. Future investigations will elucidate the molecular mechanism of glutamine addiction by identify-
ing the death pathways activating during the impairment of glutamine catabolism or when glutamine is 
limited. Finally, the development of an effective drug targeting glutamine metabolism is another challenge 
for the development of novel anticancer therapeutic strategies.
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