REFERENCES

1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet 2003;361:323-31.

2. Wen PY, Kesari S. Malignant gliomas in adults. New England J Med 2008;359:492-507.

3. Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part 1: molecular pathways and novel treatment approaches. Int J Pharm 2017;531:372-88.

4. Stewart DJ, Molep JM, Eapen L, Montpetit VAJ, Goel R, et al. Cisplatin and radiation in the treatment of tumors of the central nervous system: pharmacological considerations and results of early studies. Int J Radiat Oncol Biol Phys 1994;28:531-42.

5. Yang LJ, Zhou CF, Lin ZX. Temozolomide and radiotherapy for newly diagnosed glioblastoma multiforme: a systematic review. Cancer Investig 2014;32:31-6.

6. Bouzinab K, Summers H, Zhang J, Stevens MFG, Moody CJ, et al. In search of effective therapies to overcome resistance to temozolomide in brain tumors. Cancer Drug Resist 2019;2:1018-31.

7. Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, et al. Photodynamic therapy (PDT) for brain tumors: where do we stand? Photodiagn Photodyn Ther 2012;12:530-44.

8. Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev 2014;40:229-41.

9. Cramer SW, Chen CC. Photodynamic therapy for the treatment of glioblastoma. Front Surg 2020;6:81.

10. Girotti AW. Upregulation of nitric oxide in tumor cells as a negative adaptation to photodynamic therapy. Lasers in Surg Med 2018;50:590-8.

11. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593-615.

12. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: two sides of the same coin. Sem Cancer biol 2005;5:277-89.

13. Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD, et al. The biphasic nature of nitric oxide responses in tumor biology. Antiox Redox Signal 2006;8:1329-37.

14. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015;6:334-43.

15. Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011;146:53-66.

16. Jahani A, Bonni A. iNOS: a potential therapeutic target for malignant glioma. Curr Mol Med 2013;13:1241-9.

17. Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS expression and NO function in glioma and implications for patient therapies. Antiox Redox Signal 2017;26:986-99.

18. Switzer CH, Glynn SA, Ridnour LA, Cheng RY, Vitek MP, et al. Nitric oxide and protein phosphatase 2A provide novel therapeutic opportunities in ER-negative breast cancer. Trends Pharmacol Sci 2011;32:644-51.

19. Thomas DD, Jord’heuil D. S-nitrosation: current concepts and new developments. Antiox redox signal 2012;17:934-6.

20. Broniowska KA, Hogg N. The chemical biology of S-nitrosothiols. Antiox Redox Signal 2012;17:969-80.

21. Saleem W, Suzuki Y, Mobaraki A, Yoshida Y, Noda S, et al. Reduction of nitric oxide level enhances the radiosensitivity of hypoxic non-small cell lung cancer. Cancer Sci 2011;102:2150-6.

22. Matsunaga T, Yamaji Y, Yomokuni T, Morita H, Morikawa Y, et al. Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radic Biol Med 2014;48:1371-85.

23. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG. Photoirradiation therapy II: cure of animal tumors with hematoporphyrin and light. J Natl cancer Inst 1975;55:115-21.

24. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905.

25. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011;61:250-81.

26. Falk-Mahapatra R, Gollnick SO. Photodynamic therapy and immunity: an update. Photochem Photobiol 2020;96:550-9.

27. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B 1992;14:275-92.

28. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM, et al. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 1997;65:235-51.

29. Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neuro-Oncol 2019;141:595-607.

30. Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci 2015;16:25865-80.

31. Gilissen MJ, van de Merbel-de Wit LE, Star WM, Koster JF, Sluiter W. Effect of photodynamic therapy on the endothelium-dependent relaxation of isolated rat aortas. Cancer Res 1993;53:2548-52.

32. Gupta S, Ahmed N, Mukhtar H. Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res 1998;58:1785-8.

33. Henderson BW, Sitnik-Busch TM, Vaughan LA. Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibitors is fluence rate-dependent. Photochem Photobiol 1999;70:64-71.

34. Korbelik M, Parking CS, Shibuya H, Cecic I, Stratford MR, et al. Nitric oxide production by tumor tissue: impact on the response to photodynamic therapy. Br J Cancer 2000;82:1835-43.

35. Reeves KL, Reed MWR, Brown NJ. The role of nitric oxide in the treatment of tumors with aminolaevulinic acid-induced photodynamic therapy. J Photochem Photobiol B 2010;101:224-32.

36. Bhowmick R, Girotti AW. Signaling events in apoptotic photokilling of 5-aminolevulinic acid-treated tumor cells: inhibitory effects of nitric oxide. Free Radic Biol Med 2009;47:731-40.

37. Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic-based photodynamic therapy. Free Radic Biol Med 2010;48:1296-301.

38. Bhowmick R, Girotti AW. Rapid upregulation of cytoprotective nitric oxide in breast tumor cels subjected to a photodynamic therapy-like oxidative challenge. Photochem Photobiol 2011;87:378-86.

39. Bhowmick R, Girotti AW. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett 2014;343:115-22.

40. Fahey JM, Girotti AW. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide 2015;49:47-55.

41. Fahey JM, Girotti AW. Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: improved outcome with NOS2 inhibitors. Nitric Oxide 2017;62:52-61.

42. Fahey JM, Emmer JV, Korytowski W, Hogg N, Girotti AW. Antagonistic effects of endogenous nitric oxide in a glioblastoma photodynamic therapy model. Photochem Photobiol 2016;92:842-53.

43. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 2008;68:1777-85.

44. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000;10:415-33.

45. Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis 1999;17:555-66.

46. Veeravalli KK, Rao JS. MMP-9 and UPAR regulated glioma cell migration. Cell Adh Migr 2012;6:509-12.

47. O’Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metalloproteinase-9 interactions: biology and pharmacological significance. Biochim Biophys Acta 2014;1843:603-17.

48. Fahey JM, Girotti AW. Upstream signaling events leading ot elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 2019;137:37-45.

49. Huang B, Yang XD, Zhow MM, Ozato K, Chen LF. Brd4 coactivates transcriptional activation of NF-κB via specific binding of acetylated RelA. Mol Cell Biol 2009;29:1375-87.

50. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014;13:337-56.

51. Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. Cold Spring Harb Symp Quant Biol 2016;81:123-9.

52. Wienerroither S, Rauch I, Rosebrock F, Jamieson AM, Bradner J, et al. Regulation of NO synthesis, local inflammation and innate immunity to pathogens by BET family proteins. Mol Cell Biol 2014;34:415-27.

53. Kleszcz R, Paluszczak J, Baer-Dubowska W. Targeting aberrant cancer metabolism: the role of sirtuins. Pharmacol Rep 2015;67:1068-80.

54. Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer 2013;4:97-104.

55. Fionda C, Abruzzese MD, Santoni A, Cippitelli M. Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species in cancer. Curr Med Chem 2016;23:2618-36.

56. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, et al. Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 2001;155:387-96.

57. Matsumoto H, Takahashi A, Ohnishi T. Nitric oxide radicals choreograph a radioadaptive response. Cancer Res 2007;67:8574-9.

58. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW. Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: role of nitric oxide produced by targeted cells. Free Radic Biol Med 2017;102:111-21.

59. Bazak J, Korytowski W, Girotti AW. Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy. Cancers (Basel) 2019;11:1674.

60. Hansel TT, Kharitonov SA, Donnelly LE, Erin EM, Currie MG, et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J 2003;17:1298-317.

61. Singh D, Richards D, Knowles RG, Schwartz S, Woodcock A, et al. Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med 2007;176:988-93.

62. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, et al. Selective inhibition of BET bromodomains. Nature 2010;468:1067-73.

63. Fahey JM, Stancill JS, Smith BC, Girotti AW. Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. J Biol Chem 2018;293:5345-459.

64. Lam FC, Morton SW, Wyckoff J, Vu Han TL, Hwang MK, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 2018;9:1991.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/