Cancer Drug Resist 2022;5:[Accepted].10.20517/cdr.2022.23© The Author(s) 2022 Accepted Manuscript
Open AccessReview
Therapeutics to harness the immune microenvironment in multiple myeloma
Views: 59
James J. Ignatz-Hoover, James J. Driscoll
Correspondence Address: Dr. James J. Driscoll, Hematopoietic and Immune Cancer Biology Program, Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA. E-mail: james.driscoll@UHhospitals.org
Received: 23 Feb 2022 | Revised: 26 Apr 2022 | Accepted: 7 May 2022
Abstract
Multiple myeloma (MM) remains an incurable, genetically heterogeneous disease characterized by the uncontrolled proliferation of transformed plasma cells nurtured within a permissive bone marrow (BM) microenvironment. Current therapies leverage the unique biology of MM cells and target the immune microenvironment that drives tumor growth and facilitates immune evasion. Proteasome inhibitors and immunomodulatory drugs were introduced initially to complement and have now supplanted cytotoxic chemotherapy as frontline anti-myeloma agents. Recently, monoclonal antibodies, bispecific antibodies, and chimeric antigen receptor T cells, were developed that revamp the immune system to overcome immune suppression and have improved patient responses. While current MM therapies have markedly extended patient survival, acquired drug resistance inevitably emerges and drives disease progression. The logical progression for the next generation of MM therapies would be to design and validate agents that prevent and/or overcome acquired resistance to immunotherapies. The complex BM microenvironment promotes resistance to both current anti-myeloma agents and emerging immunotherapies. Myeloma cells are intertwined with a complex BM immune microenvironment that contributes to the development of adaptive drug resistance. Here, we describe recently FDA-approved and investigational anti-myeloma agents that directly or indirectly target the BM microenvironment to prevent or overcome drug resistance. Synergistic effects of anti-myeloma agents may foster the development of rationally-designed drug cocktails that prevent BM-mediated resistance to immunotherapies. Keywords
Multiple myeloma, drug resistance, proteasome inhibitors, immunomodulators, immunotherapeutics, adaptive resistance, bone marrow microenvironment Cite This Article
Ignatz-Hoover JJ, Driscol JJ. Therapeutics to harness the immune microenvironment in multiple myeloma. Cancer Drug Resist 2022;5:[Accept]. http://dx.doi.org/10.20517/cdr.2022.23